Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This dataset contains: Values for 42 variables related to topography, climate, vegetation, geology, and anthropogenic activities collected from 2001 to 2020. These variables were used to assess the drivers of streamflow drought deficit and duration across 2,550 stream gauges in the contiguous United States, including both natural and human-impacted sites. The computation method for each factor is detailed in Table 1. The dataset also includes trend analyses of drought duration and deficit from 1980 to 2020, performed using the Mann-Kendall test under three conditions: independence, short-term persistence, and long-term persistence. The complete analysis and findings are presented in Vicario, S.A., Hornberger, G.M., Mazzoleni, M., Garcia, M. (2025), "Drivers and trends of streamflow droughts in natural and human-impacted basins across the contiguous United States," Journal of Hydrology, DOI: https://doi.org/10.1016/j.jhydrol.2025.132908.more » « less
-
Free, publicly-accessible full text available February 1, 2026
-
This resource contains 49 factors categorized into five groups: climatic (14), topographic (11), vegetation-related (5), anthropogenic (12), and geologic (7) factors, concerning 383 watersheds within the GAGES-II gages dataset (https:// water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml) across the contiguous United States (CONUS). The selection of the 383 watersheds out of the 9067 (in the CONUS) from GAGES-II was determined by the availability of daily streamflow data from 1990 to 2020 and its anthropogenic influence. For further details, refer to section 2.1 of https://doi.org/10.1016/j.jhydrol.2024.130984. The factors represent average values for each watershed spanning 1990 to 2020, calculated using publicly available data. Detailed information on these factors, including their sources and calculation methods, is provided in Tables 1 and 2 of the PDF document (Methodology_factors.pdf). The Excel file (Factors.xlsx) contains the classification of the gages and their associated factor values. The computation of these factors was conducted for the manuscript authored by Sara Alonso Vicario, George M. Hornberger, Maurizio Mazzoleni, and Margaret Garcia, titled "The Importance of Climate and Anthropogenic Influence in Precipitation Partitioning in the Contiguous United States," published in the Journal of Hydrology, Volume 633 (2024). The manuscript is accessible at https://doi.org/10.1016/j.jhydrol.2024.130984.more » « less
-
Understanding the process of precipitation partitioning into evapotranspiration and streamflow is fundamental for water resource planning. The Budyko framework has been widely used to evaluate the factors influencing this process. Still, its application has primarily focused on studying watersheds with minimal human influence and on a relatively small number of factors. Furthermore, there are discrepancies in the literature regarding the effects of climatic factors and land use changes on this process. To address these gaps, this study aims to quantify the influence of climate and anthropogenic activities on streamflow generation in the contiguous United States. To accomplish this, we calibrated an analytical form of the Budyko curve from 1990 to 2020 for 383 watersheds. We developed regional models of , a free parameter introduced to account for controls of precipitation partitioning not captured in the original Budyko equation, within different climate zones. We computed 49 climatic and landscape factors that were related to using correlation analysis and stepwise multiple linear regression. The findings of this study show that human activities explained a low variance of the spatial heterogeneity of compared with the watershed slope and the synchronization between precipitation and potential evapotranspiration, nevertheless, urban development emerged as a factor in temperate climates, whereas irrigated agriculture emerged in cold climates. In arid climates, mean annual precipitation explains less than 20% of the spatial variability in mean annual streamflow; furthermore, this climate is the most responsive to changes in . These results provide valuable insights into how land use and climate interact to impact streamflow generation differently in the contiguous United States contingent on the regional climate, explaining discrepancies in the literature.more » « less
-
Abstract This study synthesizes the current understanding of the hydrological, impact, and adaptation processes underlying drought‐to‐flood events (i.e., consecutive drought and flood events), and how they interact. Based on an analysis of literature and a global assessment of historic cases, we show how drought can affect flood risk and assess under which circumstances drought‐to‐flood interactions can lead to increased or decreased risk. We make a distinction between hydrological, socio‐economic and adaptation processes. Hydrological processes include storage and runoff processes, which both seem to mostly play a role when the drought is a multiyear event and when the flood occurs during the drought. However, which process is dominant when and where, and how this is influenced by human intervention needs further research. Processes related to socio‐economic impacts have been studied less than hydrological processes, but in general, changes in vulnerability seem to play an important role in increasing or decreasing drought‐to‐flood impacts. Additionally, there is evidence of increased water quality problems due to drought‐to‐flood events, when compared to drought or flood events by themselves. Adaptation affects both hydrological (e.g., through groundwater extraction) or socio‐economic (e.g., influencing vulnerability) processes. There are many examples of adaptation, but there is limited evidence of when and where certain processes occur and why. Overall, research on drought‐to‐flood events is scarce. To increase our understanding of drought‐to‐flood events we need more comprehensive studies on the underlying hydrological, socio‐economic, and adaptation processes and their interactions, as well as the circumstances that lead to the dominance of certain processes. This article is categorized under:Science of Water > Hydrological ProcessesScience of Water > Water Extremesmore » « less
An official website of the United States government
